Turbulent flux events in a nearly neutral atmospheric boundary layer.

نویسندگان

  • Roddam Narasimha
  • S Rudra Kumar
  • A Prabhu
  • S V Kailas
چکیده

We propose here a novel method of analysing turbulent momentum flux signals. The data for the analysis come from a nearly neutral atmospheric boundary layer and are taken at a height of 4m above ground corresponding to 1.1 x 10(5) wall units, within the log layer for the mean velocity. The method of analysis involves examining the instantaneous flux profiles that exceed a given threshold, for which an optimum value is found to be 1 s.d. of the flux signal. It is found feasible to identify normalized flux variation signatures separately for positive and negative 'flux events'-the sign being determined by that of the flux itself. Using these signatures, the flux signal is transformed to one of events characterized by the time of occurrence, duration and intensity. It is also found that both the average duration and the average time-interval between successive events are of order 1s, about four orders of magnitude higher than a wall unit in time. This episodic description of the turbulence flux in the time domain enables us to identify separately productive, counter-productive and idle periods (accounting, respectively, for 36, 15 and 49% of the time), taking as criterion the generation of the momentum flux. A 'burstiness' index of 0.72 is found for the data. Comparison with laboratory data indicates higher (/lower) ejection (/sweep) quadrant occupancy but lower (/higher) contributions to flux from the ejection (/sweep) quadrant at the high Reynolds numbers of the atmospheric boundary layer. Possible connections with the concept of active and passive motion in a turbulent boundary layer are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Turbulence and turbulent flux events in a small estuary

Relatively little systematic research has been conducted on the turbulence characteristics of small estuaries. In the present study, detailed measurements were conducted in a small subtropical estuary with a focus on turbulent flux events. Acoustic Doppler velocimeters were installed in the mid-estuary at fixed locations and sampled simultaneously and continuously for 50 h. A turbulent flux eve...

متن کامل

Large-Eddy Simulation of Marine Atmospheric Boundary Layers above a Spectrum of Moving Waves

Momentum and scalar transport in the marine atmospheric boundary layer (MABL) is driven by a turbulent mix of winds, buoyancy, and surface gravity waves. To investigate the interaction between these processes, a large-eddy simulation (LES)model is developed with the capability to impose a broadband spectrum of time-varying finite-amplitude surface waves at its lower boundary. The LES model adop...

متن کامل

Improving a global model from the boundary layer: Total turbulent energy and the neutral limit Prandtl number

Model intercomparisons have identified important deficits in the representation of the stable boundary layer by turbulence parametrizations used in current weather and climate models. However, detrimental impacts of more realistic schemes on the large-scale flow have hindered progress in this area. Here we implement a total turbulent energy scheme into the climate model ECHAM6. The total turbul...

متن کامل

Parameterization of Nonlocal Mixing in the Marine Boundary Layer: A Study Combining Measurements and Large-Eddy

The long-range goal of this research is to improve understanding of small-scale mixing processes in the atmospheric boundary layer and to incorporate the effects of these processes in mesoscale models. Studies of the atmospheric boundary layer using large-eddy simulation (LES) have demonstrated the value of these models in describing basic turbulent processes in the atmospheric boundary layer. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 365 1852  شماره 

صفحات  -

تاریخ انتشار 2007